Assessing exposure risks for aquatic organisms posed by Tamiflu use under seasonal influenza and pandemic conditions.

نویسندگان

  • Wei-Yu Chen
  • Chia-Jung Lin
  • Chung-Min Liao
چکیده

Environmental pollution by anti-influenza drugs is increasingly recognized as a threat to aquatic environments. However, little is known about empirical data on risk effects posed by environmentally relevant concentrations of anti-influenza drug based on recently published ecotoxicological researches in Taiwan. Here we linked ecotoxicology models with an epidemiological scheme to assess exposure risks of aquatic organisms and environmental hazards posed by antiviral oseltamivir (Tamiflu) use in Taiwan. Built on published bioassays, we used probabilistic risk assessment model to estimate potential threats of environmentally relevant hazards on algae, daphnid, and zerbrafish. We found that Tamiflu use was unlikely to pose a significant chronic environmental risk to daphnia and zebrafish during seasonal influenza. However, the chronic environmental risk posed by Tamiflu use during pandemic was alarming. We conclude that no significant risk to algal growth was found during seasonal influenza and high pandemic Tamiflu use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meeting Report: Risk Assessment of Tamiflu Use Under Pandemic Conditions

On 3 October 2007, 40 participants with diverse expertise attended the workshop Tamiflu and the Environment: Implications of Use under Pandemic Conditions to assess the potential human health impact and environmental hazards associated with use of Tamiflu during an influenza pandemic. Based on the identification and risk-ranking of knowledge gaps, the consensus was that oseltamivir ethylester-p...

متن کامل

Oseltamivir (Tamiflu®) in the environment, resistance development in influenza A viruses of dabbling ducks and the risk of transmission of an oseltamivir-resistant virus to humans – a review

The antiviral drug oseltamivir (Tamiflu(®)) is a cornerstone in influenza pandemic preparedness plans worldwide. However, resistance to the drug is a growing concern. The active metabolite oseltamivir carboxylate (OC) is not degraded in surface water or sewage treatment plants and has been detected in river water during seasonal influenza outbreaks. The natural influenza reservoir, dabbling duc...

متن کامل

Potential Risks Associated with the Proposed Widespread Use of Tamiflu

BACKGROUND The threat of pandemic influenza has focused attention and resources on virus surveillance, prevention, and containment. The World Health Organization has strongly recommended the use of the antiviral drug Tamiflu both to treat and prevent pandemic influenza infection. A major concern for the long-term efficacy of this strategy is to limit the development of Tamiflu-resistant influen...

متن کامل

Detection of the Antiviral Drug Oseltamivir in Aquatic Environments

Oseltamivir (Tamiflu) is the most important antiviral drug available and a cornerstone in the defence against a future influenza pandemic. Recent publications have shown that the active metabolite, oseltamivir carboxylate (OC), is not degraded in sewage treatment plants and is also persistent in aquatic environments. This implies that OC will be present in aquatic environments in areas where os...

متن کامل

A Computational-Experimental Approach Identifies Mutations That Enhance Surface Expression of an Oseltamivir-Resistant Influenza Neuraminidase

The His274→Tyr (H274Y) oseltamivir (Tamiflu) resistance mutation causes a substantial decrease in the total levels of surface-expressed neuraminidase protein and activity in early isolates of human seasonal H1N1 influenza, and in the swine-origin pandemic H1N1. In seasonal H1N1, H274Y only became widespread after the occurrence of secondary mutations that counteracted this decrease. H274Y is cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental pollution

دوره 184  شماره 

صفحات  -

تاریخ انتشار 2014